Serveur d'exploration sur l'agrobacterium et la transgénèse

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Factors influencing Agrobacterium-mediated transient expression of gusA in rice.

Identifieur interne : 000947 ( Main/Exploration ); précédent : 000946; suivant : 000948

Factors influencing Agrobacterium-mediated transient expression of gusA in rice.

Auteurs : X Q Li [États-Unis] ; C N Liu ; S W Ritchie ; J Y Peng ; S B Gelvin ; T K Hodges

Source :

RBID : pubmed:1463839

Descripteurs français

English descriptors

Abstract

Transient expression of GUS in rice (Oryza sativa L.) mediated by Agrobacterium tumefaciens was characterized using binary vectors containing gusA genes that express minimal (pKIWI105 and pCNL1) or no (p35S-GUS-INT and pCNL56) GUS activity in bacteria. Four-day old seedlings obtained from seeds or immature embryos of rice were cut into shoot, root, and seed remnants and inoculated with various strains of A. tumefaciens. Transient GUS expression events were quantitated histochemically by determining the frequency of explants exhibiting blue spots indicative of GUS at four to six days after cocultivation with A. tumefaciens. A. tumefaciens strains that did not contain the gusA gene (At643) or a Ti-plasmid (At563 and At657) did not elicit any blue staining characteristic of GUS activity. Several parameters were important in obtaining efficient transient expression of GUS in rice mediated by A. tumefaciens. The growth regulator 2,4-D inhibited GUS expression if present during the seed germination period, but the presence of 6 mg/l 2,4-D during cocultivation of the explants with A. tumefaciens slightly enhanced GUS expression efficiency. All 21 rice cultivars tested expressed GUS after co-cultivation with A. tumefaciens. The GUS expression frequency was highest amongst the indica cultivars. The frequencies of GUS expression in japonica cultivars and in Oryza glaberrima cultivars (grown primarily in Africa) were generally one-half to one-third the level found for indica varieties. Leaf explants were more susceptible to A. tumefaciens-facilitated GUS expression than were roots or seed remnants. The vir genes of an agropine-type Ti-plasmid of A. tumefaciens were most effective in directing transient GUS expression in rice, whereas those of a nopaline-type and an octopine-type plasmid were less effective. We have also found that the frequency of transient expression of GUS was higher with pBIN19 as the precursor cloning vector than with pEND4K as the precursor cloning vector. Reasons for differences in effectiveness of these binary vectors are discussed. Using the conditions described here, A. tumefaciens-mediated frequencies of transient GUS expression in four-day old shoots of several rice cultivars were routinely in excess of 50%.

DOI: 10.1007/BF00028891
PubMed: 1463839


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Factors influencing Agrobacterium-mediated transient expression of gusA in rice.</title>
<author>
<name sortKey="Li, X Q" sort="Li, X Q" uniqKey="Li X" first="X Q" last="Li">X Q Li</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Botany and Plant Pathology, Purdue University, West Lafayette, IN 47907.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<placeName>
<region type="state">Indiana</region>
</placeName>
<wicri:cityArea>Department of Botany and Plant Pathology, Purdue University, West Lafayette</wicri:cityArea>
</affiliation>
</author>
<author>
<name sortKey="Liu, C N" sort="Liu, C N" uniqKey="Liu C" first="C N" last="Liu">C N Liu</name>
</author>
<author>
<name sortKey="Ritchie, S W" sort="Ritchie, S W" uniqKey="Ritchie S" first="S W" last="Ritchie">S W Ritchie</name>
</author>
<author>
<name sortKey="Peng, J Y" sort="Peng, J Y" uniqKey="Peng J" first="J Y" last="Peng">J Y Peng</name>
</author>
<author>
<name sortKey="Gelvin, S B" sort="Gelvin, S B" uniqKey="Gelvin S" first="S B" last="Gelvin">S B Gelvin</name>
</author>
<author>
<name sortKey="Hodges, T K" sort="Hodges, T K" uniqKey="Hodges T" first="T K" last="Hodges">T K Hodges</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="1992">1992</date>
<idno type="RBID">pubmed:1463839</idno>
<idno type="pmid">1463839</idno>
<idno type="doi">10.1007/BF00028891</idno>
<idno type="wicri:Area/Main/Corpus">000944</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000944</idno>
<idno type="wicri:Area/Main/Curation">000944</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">000944</idno>
<idno type="wicri:Area/Main/Exploration">000944</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Factors influencing Agrobacterium-mediated transient expression of gusA in rice.</title>
<author>
<name sortKey="Li, X Q" sort="Li, X Q" uniqKey="Li X" first="X Q" last="Li">X Q Li</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Botany and Plant Pathology, Purdue University, West Lafayette, IN 47907.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<placeName>
<region type="state">Indiana</region>
</placeName>
<wicri:cityArea>Department of Botany and Plant Pathology, Purdue University, West Lafayette</wicri:cityArea>
</affiliation>
</author>
<author>
<name sortKey="Liu, C N" sort="Liu, C N" uniqKey="Liu C" first="C N" last="Liu">C N Liu</name>
</author>
<author>
<name sortKey="Ritchie, S W" sort="Ritchie, S W" uniqKey="Ritchie S" first="S W" last="Ritchie">S W Ritchie</name>
</author>
<author>
<name sortKey="Peng, J Y" sort="Peng, J Y" uniqKey="Peng J" first="J Y" last="Peng">J Y Peng</name>
</author>
<author>
<name sortKey="Gelvin, S B" sort="Gelvin, S B" uniqKey="Gelvin S" first="S B" last="Gelvin">S B Gelvin</name>
</author>
<author>
<name sortKey="Hodges, T K" sort="Hodges, T K" uniqKey="Hodges T" first="T K" last="Hodges">T K Hodges</name>
</author>
</analytic>
<series>
<title level="j">Plant molecular biology</title>
<idno type="ISSN">0167-4412</idno>
<imprint>
<date when="1992" type="published">1992</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>2,4-Dichlorophenoxyacetic Acid (pharmacology)</term>
<term>Agrobacterium tumefaciens (genetics)</term>
<term>Cells, Cultured (MeSH)</term>
<term>Gene Expression Regulation, Enzymologic (drug effects)</term>
<term>Genetic Vectors (MeSH)</term>
<term>Glucuronidase (genetics)</term>
<term>In Vitro Techniques (MeSH)</term>
<term>Oryza (genetics)</term>
<term>Plasmids (MeSH)</term>
<term>RNA, Messenger (genetics)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>ARN messager (génétique)</term>
<term>Acide 2,4-dichlorophénoxy-acétique (pharmacologie)</term>
<term>Agrobacterium tumefaciens (génétique)</term>
<term>Cellules cultivées (MeSH)</term>
<term>Glucuronidase (génétique)</term>
<term>Oryza (génétique)</term>
<term>Plasmides (MeSH)</term>
<term>Régulation de l'expression des gènes codant pour des enzymes (effets des médicaments et des substances chimiques)</term>
<term>Techniques in vitro (MeSH)</term>
<term>Vecteurs génétiques (MeSH)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="genetics" xml:lang="en">
<term>Glucuronidase</term>
<term>RNA, Messenger</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="pharmacology" xml:lang="en">
<term>2,4-Dichlorophenoxyacetic Acid</term>
</keywords>
<keywords scheme="MESH" qualifier="drug effects" xml:lang="en">
<term>Gene Expression Regulation, Enzymologic</term>
</keywords>
<keywords scheme="MESH" qualifier="effets des médicaments et des substances chimiques" xml:lang="fr">
<term>Régulation de l'expression des gènes codant pour des enzymes</term>
</keywords>
<keywords scheme="MESH" qualifier="genetics" xml:lang="en">
<term>Agrobacterium tumefaciens</term>
<term>Oryza</term>
</keywords>
<keywords scheme="MESH" qualifier="génétique" xml:lang="fr">
<term>ARN messager</term>
<term>Agrobacterium tumefaciens</term>
<term>Glucuronidase</term>
<term>Oryza</term>
</keywords>
<keywords scheme="MESH" qualifier="pharmacologie" xml:lang="fr">
<term>Acide 2,4-dichlorophénoxy-acétique</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Cells, Cultured</term>
<term>Genetic Vectors</term>
<term>In Vitro Techniques</term>
<term>Plasmids</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Cellules cultivées</term>
<term>Plasmides</term>
<term>Techniques in vitro</term>
<term>Vecteurs génétiques</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Transient expression of GUS in rice (Oryza sativa L.) mediated by Agrobacterium tumefaciens was characterized using binary vectors containing gusA genes that express minimal (pKIWI105 and pCNL1) or no (p35S-GUS-INT and pCNL56) GUS activity in bacteria. Four-day old seedlings obtained from seeds or immature embryos of rice were cut into shoot, root, and seed remnants and inoculated with various strains of A. tumefaciens. Transient GUS expression events were quantitated histochemically by determining the frequency of explants exhibiting blue spots indicative of GUS at four to six days after cocultivation with A. tumefaciens. A. tumefaciens strains that did not contain the gusA gene (At643) or a Ti-plasmid (At563 and At657) did not elicit any blue staining characteristic of GUS activity. Several parameters were important in obtaining efficient transient expression of GUS in rice mediated by A. tumefaciens. The growth regulator 2,4-D inhibited GUS expression if present during the seed germination period, but the presence of 6 mg/l 2,4-D during cocultivation of the explants with A. tumefaciens slightly enhanced GUS expression efficiency. All 21 rice cultivars tested expressed GUS after co-cultivation with A. tumefaciens. The GUS expression frequency was highest amongst the indica cultivars. The frequencies of GUS expression in japonica cultivars and in Oryza glaberrima cultivars (grown primarily in Africa) were generally one-half to one-third the level found for indica varieties. Leaf explants were more susceptible to A. tumefaciens-facilitated GUS expression than were roots or seed remnants. The vir genes of an agropine-type Ti-plasmid of A. tumefaciens were most effective in directing transient GUS expression in rice, whereas those of a nopaline-type and an octopine-type plasmid were less effective. We have also found that the frequency of transient expression of GUS was higher with pBIN19 as the precursor cloning vector than with pEND4K as the precursor cloning vector. Reasons for differences in effectiveness of these binary vectors are discussed. Using the conditions described here, A. tumefaciens-mediated frequencies of transient GUS expression in four-day old shoots of several rice cultivars were routinely in excess of 50%.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">1463839</PMID>
<DateCompleted>
<Year>1993</Year>
<Month>01</Month>
<Day>19</Day>
</DateCompleted>
<DateRevised>
<Year>2019</Year>
<Month>08</Month>
<Day>19</Day>
</DateRevised>
<Article PubModel="Print">
<Journal>
<ISSN IssnType="Print">0167-4412</ISSN>
<JournalIssue CitedMedium="Print">
<Volume>20</Volume>
<Issue>6</Issue>
<PubDate>
<Year>1992</Year>
<Month>Dec</Month>
</PubDate>
</JournalIssue>
<Title>Plant molecular biology</Title>
<ISOAbbreviation>Plant Mol Biol</ISOAbbreviation>
</Journal>
<ArticleTitle>Factors influencing Agrobacterium-mediated transient expression of gusA in rice.</ArticleTitle>
<Pagination>
<MedlinePgn>1037-48</MedlinePgn>
</Pagination>
<Abstract>
<AbstractText>Transient expression of GUS in rice (Oryza sativa L.) mediated by Agrobacterium tumefaciens was characterized using binary vectors containing gusA genes that express minimal (pKIWI105 and pCNL1) or no (p35S-GUS-INT and pCNL56) GUS activity in bacteria. Four-day old seedlings obtained from seeds or immature embryos of rice were cut into shoot, root, and seed remnants and inoculated with various strains of A. tumefaciens. Transient GUS expression events were quantitated histochemically by determining the frequency of explants exhibiting blue spots indicative of GUS at four to six days after cocultivation with A. tumefaciens. A. tumefaciens strains that did not contain the gusA gene (At643) or a Ti-plasmid (At563 and At657) did not elicit any blue staining characteristic of GUS activity. Several parameters were important in obtaining efficient transient expression of GUS in rice mediated by A. tumefaciens. The growth regulator 2,4-D inhibited GUS expression if present during the seed germination period, but the presence of 6 mg/l 2,4-D during cocultivation of the explants with A. tumefaciens slightly enhanced GUS expression efficiency. All 21 rice cultivars tested expressed GUS after co-cultivation with A. tumefaciens. The GUS expression frequency was highest amongst the indica cultivars. The frequencies of GUS expression in japonica cultivars and in Oryza glaberrima cultivars (grown primarily in Africa) were generally one-half to one-third the level found for indica varieties. Leaf explants were more susceptible to A. tumefaciens-facilitated GUS expression than were roots or seed remnants. The vir genes of an agropine-type Ti-plasmid of A. tumefaciens were most effective in directing transient GUS expression in rice, whereas those of a nopaline-type and an octopine-type plasmid were less effective. We have also found that the frequency of transient expression of GUS was higher with pBIN19 as the precursor cloning vector than with pEND4K as the precursor cloning vector. Reasons for differences in effectiveness of these binary vectors are discussed. Using the conditions described here, A. tumefaciens-mediated frequencies of transient GUS expression in four-day old shoots of several rice cultivars were routinely in excess of 50%.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Li</LastName>
<ForeName>X Q</ForeName>
<Initials>XQ</Initials>
<AffiliationInfo>
<Affiliation>Department of Botany and Plant Pathology, Purdue University, West Lafayette, IN 47907.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Liu</LastName>
<ForeName>C N</ForeName>
<Initials>CN</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Ritchie</LastName>
<ForeName>S W</ForeName>
<Initials>SW</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Peng</LastName>
<ForeName>J Y</ForeName>
<Initials>JY</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Gelvin</LastName>
<ForeName>S B</ForeName>
<Initials>SB</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Hodges</LastName>
<ForeName>T K</ForeName>
<Initials>TK</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
</PublicationTypeList>
</Article>
<MedlineJournalInfo>
<Country>Netherlands</Country>
<MedlineTA>Plant Mol Biol</MedlineTA>
<NlmUniqueID>9106343</NlmUniqueID>
<ISSNLinking>0167-4412</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D012333">RNA, Messenger</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>2577AQ9262</RegistryNumber>
<NameOfSubstance UI="D015084">2,4-Dichlorophenoxyacetic Acid</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 3.2.1.31</RegistryNumber>
<NameOfSubstance UI="D005966">Glucuronidase</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<GeneSymbolList>
<GeneSymbol>gusA</GeneSymbol>
</GeneSymbolList>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D015084" MajorTopicYN="N">2,4-Dichlorophenoxyacetic Acid</DescriptorName>
<QualifierName UI="Q000494" MajorTopicYN="N">pharmacology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D016960" MajorTopicYN="N">Agrobacterium tumefaciens</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D002478" MajorTopicYN="N">Cells, Cultured</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D015971" MajorTopicYN="N">Gene Expression Regulation, Enzymologic</DescriptorName>
<QualifierName UI="Q000187" MajorTopicYN="N">drug effects</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D005822" MajorTopicYN="N">Genetic Vectors</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D005966" MajorTopicYN="N">Glucuronidase</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D066298" MajorTopicYN="N">In Vitro Techniques</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D012275" MajorTopicYN="N">Oryza</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010957" MajorTopicYN="N">Plasmids</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D012333" MajorTopicYN="N">RNA, Messenger</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="pubmed">
<Year>1992</Year>
<Month>12</Month>
<Day>1</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>1992</Year>
<Month>12</Month>
<Day>1</Day>
<Hour>0</Hour>
<Minute>1</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>1992</Year>
<Month>12</Month>
<Day>1</Day>
<Hour>0</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">1463839</ArticleId>
<ArticleId IdType="doi">10.1007/BF00028891</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 1980 Dec;77(12):7347-51</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7012838</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Mol Biol. 1989 Sep;13(3):327-36</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2491660</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 1987 Mar;83(3):529-34</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16665283</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Bacteriol. 1986 Dec;168(3):1291-301</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">3782037</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 1990 Jul;2(7):603-618</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12354967</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Bacteriol. 1989 Dec;171(12):6845-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2592351</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 1991 Feb;95(2):426-34</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16668001</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 1985 Jul 11;13(13):4777-88</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">4022773</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 1984 Nov 26;12(22):8711-21</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">6095209</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 1987 Aug;84(15):5345-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16593862</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Mol Appl Genet. 1982;1(6):561-73</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7153689</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Bacteriol. 1975 Jul;123(1):255-64</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1141196</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 1974 Nov 8;252(5479):169-70</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">4419109</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plasmid. 1978 Feb;1(2):238-53</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">748949</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Gen Genet. 1990 Jan;220(2):245-50</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2325623</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 1991 Dec 1;88(23):10426-30</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11607242</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 1974 Sep;71(9):3672-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">4530328</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Mol Biol. 1989 Jan;12(1):31-40</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24272715</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Bacteriol. 1987 Oct;169(10):4417-25</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2443480</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Mol Biol. 1990 Jan;14(1):61-72</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2101312</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Bacteriol. 1988 Apr;170(4):1523-32</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2832367</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 1986 Jun;83(11):3895-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">3459162</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 1981 Nov;27(1 Pt 2):143-53</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">6276020</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>EMBO J. 1986 Jun;5(6):1137-42</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15966101</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell Rep. 1990 Oct;9(6):303-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24226938</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>États-Unis</li>
</country>
<region>
<li>Indiana</li>
</region>
</list>
<tree>
<noCountry>
<name sortKey="Gelvin, S B" sort="Gelvin, S B" uniqKey="Gelvin S" first="S B" last="Gelvin">S B Gelvin</name>
<name sortKey="Hodges, T K" sort="Hodges, T K" uniqKey="Hodges T" first="T K" last="Hodges">T K Hodges</name>
<name sortKey="Liu, C N" sort="Liu, C N" uniqKey="Liu C" first="C N" last="Liu">C N Liu</name>
<name sortKey="Peng, J Y" sort="Peng, J Y" uniqKey="Peng J" first="J Y" last="Peng">J Y Peng</name>
<name sortKey="Ritchie, S W" sort="Ritchie, S W" uniqKey="Ritchie S" first="S W" last="Ritchie">S W Ritchie</name>
</noCountry>
<country name="États-Unis">
<region name="Indiana">
<name sortKey="Li, X Q" sort="Li, X Q" uniqKey="Li X" first="X Q" last="Li">X Q Li</name>
</region>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/AgrobacTransV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000947 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 000947 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    AgrobacTransV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:1463839
   |texte=   Factors influencing Agrobacterium-mediated transient expression of gusA in rice.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:1463839" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a AgrobacTransV1 

Wicri

This area was generated with Dilib version V0.6.38.
Data generation: Fri Nov 20 15:45:55 2020. Site generation: Wed Mar 6 15:24:41 2024